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In [2] the possibil i ty is indicated of effectively using the approximation [1] of the boundary condition 
on the free surface of an ideal heavy fluid for the study of jet flows with polygonal solid boundaries,  whose 
separate  sections are inclined to the horizon at angles ~r/2 and ~/6. In this study the analytic function 
is introduced, whose imaginary  part  becomes zero  on the free boundary. 

The present  study concerns  the jet flow of an ideal heavy fluid with a free boundary in a geometry  such 
that e i ther  the real  o r  the imaginary par ts  of function @ are equal to zero  on every  flew boundary. This 
allows us to es tabl ish the function with accuracy  up to severa l  constants and then obtain the values of the 
constants f rom an analysis  of additional information about the problem. 

Let there be the steady plane flow of an ideal heavy fluid which is represented  in Fig. 1. Here AD, 
DC, and AE are solid walls inclined to the x axis at the angles indicated in the figure. The fluid flows uni-  
formly from an infinitely distant point A and descends along a tangent to AE at point B; the let with the free 
boundary BC flows along the infinite wall DC. A scheme of nondetached flow around angle D is assumed,  
which indicates that the velocity becomes infinite at this point. The fluid-flow rate Q and the channel width 
H at point A are known. The accelera t ion of free fall g is oriented in the negative direction of the y axis. 
We must  determine the form of the free boundary and the coordinates  of the descent point B. 

We assume p a r a m e t e r  H for the l inear  scale,  quantity Q for the scale of the potential and the s t ream 
function, and ratio Q/H for the scale of the velocity.  We introduce the dimensionless variable of the physi -  
cal  plane z = x + iy and the dimensionless  complex potential W =e + ir In the z plane the channel width at 
point A is equal to unity, and in the W plane the zone of flow is a s tr ip of unit width. By freely  choosing the 
potential level, we assume that the potential is equal to zero at point D. We introduce the auxil iary complex 
variable t so that the upper half-plane cor responds  to the zone of flow of the t plane. The var iables  W and 
t together  with the cor respondence  of the points indicated in Fig. 2 are related by the equation. 

w - 2 in  (t ~ l )  . ( 1 )  

Since the potential of point B is unknown, we introduce pa rame te r  # which charac te r i zes  the location 
of the point on the rea l  axis of the t plane. 

It is known [3] that the condition of p r e s su re  constancy on the free boundary can be written in the 
following differential form: 

v ch "3 4- sinO= O, v :  Q~ (2) 
3 d~ H~g 

Here 0 is the angle, which is measured  counterclockwise from the x axis, between the fluid veloc-  
ity vec tor  on the free boundary and the x axis. We c a r r y  out the fur ther  t ransformat ion  of condition 
(2) by following [2]. We introduce the function ~ by the equation v =e ~- and we assume angle 0 to be 
small ,  so that sin 0 ~ 1/3 sin 30.  
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L e t  ~ = - - T  + i 0  

�9 t ~ ( 3 )  

Re q) = v a0 _? i e-3~ COS 30 
Y 

Oz ~_ i e-a~ sia39 �9 

We can  e s t a b l i s h  t ha t  the  c o n d i t i o n  on the  f r ee  b o u n d a r y  i s  f o r m u l a t e d  in  new v a r i a b l e s  a s  I M P = 0 .  

F r o m  (3) f o r  t he  r e a l  p a r t  of func t ion  ,~ we can  see  tha t  on the  r e c t a n g u l a r - s o l i d  flow b o u n d a r i e s  
wh ich  f o r m  a n g l e s  O = ~:v/6  wi th  the  x a x i s ,  R e ~ = 0 .  Thus ,  on e v e r y  r e a l  a x i s  of the  t p l a n e ,  we have  

tm q ) =  0 (-- co, - -  ~) 
Re r = 0 ( -  ~, - t) ( 4 )  
R e ~ : 0  ( - -  1,9)  
R e @ ~  0 (0, oo) . 

The  func t ion  tha t  s a t i s f i e s  (4) can  be e s t a b l i s h e d  by  m e a n s  of  the  K e l d y s h - S e d o v  f o r m u l a  [4] i f  the  
l o c a t i o n  and  o r d e r  o f  i t s  p o l e s  a r e  "known. We s tudy  the  s i n g u l a r i t i e s  of funct ion  �9 in  the  c a s e  u n d e r  s tudy ,  
fo r  which  we i n t r o d u c e  the  new func t ion  X =e  -3~ and r e w r i t e  (3) a s  

=tv~ t dz_t_ i l _~_ (t + l) (5) -s  - - ~ E .  

F r o m  (3) it  fo l lows  tha t  f o r  t = - 1  funct ion  �9 does  not  p o s s e s s  s i n g u l a r i t y .  We e x a m i n e  the  b e h a v i o r  
of  the  func t ion  f o r  t -*  + ~ .  Since the  l a r g e  r e a l  v a l u e s  of  the  a r g u m e n t  c o r r e s p o n d  to po in t s  on DC of the  
p h y s i c a l  p l a n e ,  t hen  Re 6 = 0 .  We i n v e s t i g a t e  the  b e h a v i o r  o f  a r  Since  r = in  v, and  f r o m  the  B e r n o u l l i  
i n t e g r a l  v ~ AvrA~-y, w h e r e  A is  a c e r t a i n  c o n s t a n t ,  t hen  

a t  _ I av  t O~ 

Oq) v a T  v~ Oy 

Thi s  e x p r e s s i o n  a p p r o a c h e s  z e r o  f o r  y-~--  ~o(t-* + ~O)o Conse que n t l y ,  ~ - -  0. The  quan t i t y  @ b e h a v e s  
t he  s a m e  f o r  t ~ -  ~o Po in t  B i s  a l s o  a r e g u l a r  po in t .  At  po in t  D the  v e l o c i t y  b e c o m e s  in f in i te  ( funct ion X 
h a s  a po le  of  the  f i r s t  o r d e r  f o r  t = 0). F r o m  (5) i t  fo l lows  tha t ,  i ndependen t  of  the  o r d e r  of  the  po le  of  
func t ion  X ( i m p o r t a n t  a s  i t  i s ) ,  func t ion  ~ has  a po le  of  the  f i r s t  o r d e r  fo r  t = 0 .  At  the  r e m a i n i n g  po in t s  
o f  the  f low it  i s  a n a l y t i c .  

The  i n f o r m a t i o n  o b t a i n e d  a l l o w s  us  by  m e a n s  o f  the  K e l d y s h - S e d o v  f o r m u l a  [4] to  e s t a b l i s h  

(I) : c ~-  ia V y, -~ t ] t . (6) 

H e r e - c  and a a r e  c o n s t a n t s  to  be d e t e r m i n e d .  Since  fo r  t -~ ~ (p -~ 0~ then  c = 0. 

We e x a m i n e  the  e x p r e s s i o n s  f o r  the  r e a l  and i m a g i n a r y  p a r t s  of  f tmct ion  5 fo r  t - ~ -  1. We have  R e ~  ~ 0. 

The  t e r m  v (0T /3  qg)--* 0 f o r  t - ~ - - l .  Thus ,  lira dp = i ]  3. Hence  and f r o m  r e l a t i o n  (6) we ob ta in  t -~ - 1 
t--*--i 

V ~  = i = - V~ �9 ( 7 )  

F o r  d e t e r m i n i n g  the  p a r a m e t e r s  in (6) we m u s t  s t i l l  c o n s t r u c t  a n o t h e r  equa t ion .  F o r  t h i s  we r e w r i t e  

(5) in  t he  f o r m  

(t4-- O~+~ ,1 )z  = ~ (8) 

Equa t ion  (8) t o g e t h e r  wi th  t he  known func t ion  4i i s  the  d i f f e r e n t i a l  equa t ion  fo r  f inding  X. 

po in t .  
po in t ,  we can  d e t e r m i n e  what  r i s  fo r  t -~ 0. 

L e t ,  in the  v i c i n i t y  o f  t =0 ,  X ~ B / t ,  w h e r e  B i s  a c o n s t a n t .  

T h u s ,  f r o m  (8) f o r  t ~  0 i t  fo l lows  tha t  

-~ / t~+  3~I'rFB =0, 3~ V ~ - - - t .  

The s i n g u l a r i t y  of  func t ion  @ a t  po in t  t = 0  d e t e r m i n e s  the  f o r m  of  the  s i n g u l a r i t y  o f  funct ion  X at  t h i s  
S ince  i t  fo l lows  f r o m  p h y s i c a l  c o n s i d e r a t i o n s  tha t  X shou ld  have  a po l e  o f  the  f i r s t  o r d e r  a t  t h i s  

( 9 )  
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From (8) and (9) we obtain 

~ = ~ 2 . 2 / ( . ~ r  ~ = V ~ ~  �9 (10) 

Function # is completely determined by Eqs. (6) and (10) (c =0). 

The f i rs t  equation of (10) determines  by means of Eq. (1) the flow potential at the descent point. 

The problem is completely solved, since function X is found from Eq. (8). The constant appearing 
in the integration of the equation is found f rom the Bernoulli  integral  which is written for any two values 
of t on the free boundary. The t r ans fo rmat ion  from variable t to the physical  variable z is real ized accord -  
ing to the equation [3] 

t 

f d W  e~~ 
z ~ d t  v " 

o 

Here v is the absolute value of the velocity and 0 is the angle between the x axis and the velocity vec -  
tot. 

We can see from the determination of p a r a m e t e r  # that it is positive. It follows from (10) that flow 
with tangential  descent at a point (Fig. 1) is possible only for the condition ~w> 1. 

For  small  values of v, we can expect that the free boundary in the neighborhood of point B will be 
horizontal .  The s t reamline  at this point will undergo a break (the angle of break is 5,v/6, and in the previous 
case,  v). By an analysis  s imi la r  to the one ca r r i ed  out, we can establ ish that �9 in this case takes the form 

CO = l a  / t ] / , U  t . (11) 

From (11) and f rom the establ ished proper t ies  of �9 for  the pa ramete r s  a and #, we have 

,. = 1 / (~ -- a-k,-'). . = -- .~v 1 3 V 1 -- .~:~.-'. (12) 

The p a r a m e t e r  # is also positive in this case .  Consequently, a flow of such type is possible only for 
v u < l .  
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